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Abstract. All observed spectral lines of Ne III in the range 204 Å to 36 µm (277 cm−1 to 490000 cm−1)
have been compiled and critically evaluated. 57 visible and ultraviolet lines of Ne III have been precisely
measured using Fourier transform spectroscopy. An optimized level scheme has been derived from the total
list of observed lines. Relative positions of about 180 out of a total of 226 previously known energy levels
of Ne III have been determined with improved accuracy compared to previous studies. Excitation energies
of almost all excited levels have been revised by (1.5–2.0) cm−1. 127 precise wavelength standards in the
region 210 Å to 2900 Å have been derived. Concepts of error current and covariance matrix have been
implemented in a computational algorithm that permits one to derive the uncertainties of Ritz wavelength
standards obtained from a set of least-squares-optimized energy levels. Nine new energy levels have been
found, and 16 new transitions have been identified in the extreme ultraviolet region. The ionization potential
has been increased by 4.5 cm−1. The new value is (511543.5 ± 2.7) cm−1 (63.4233 eV ± 0.0003 eV).

PACS. 32.10.Fn Fine and hyperfine structure – 32.10.Hq Ionization potentials, electron affinities – 32.30.Jc
Visible and ultraviolet spectra – 32.70.Cs Oscillator strengths, lifetimes, transition moments – 31.15.Ct
Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods, etc.) – 95.30.Ky
Atomic and molecular data, spectra, and spectral parameters (opacities, rotation constants, line identifi-
cation, oscillator strengths, gf values, transition probabilities, etc.)

1 Introduction

The spectrum of doubly ionized neon was first analyzed
by de Bruin in 1932 [1], von Keussler in 1933 [2] and Boyce
in 1934 [3]. These works were used by Moore in her com-
pilation [4]. Since then, Bowen in 1955 [5] and 1960 [6]
measured three very important parity-forbidden Ne III
lines in emission spectra of planetary nebulae. In 1971,
Persson [7] made an important advance in the laboratory
investigation of the spectrum. He used a hollow cathode
discharge to analyze the Ne II lines in the visible and ul-
traviolet (UV) regions with much higher precision than
earlier. The low intensity of the Ne III lines did not per-
mit him to make a complete analysis of this spectrum,
but he published the energy values for the levels of the Ne
III ground configuration derived from Bowen’s data [5]
along with the values he deduced from his Ne II line series
measurements. In 1980, Edlén used the Ne III levels from
Persson [7] in his compilation of the levels of the 2s22p4

configuration along the O I sequence [8].
The most complete analysis of the Ne III spectrum was

published by Persson et al. in 1991 [9]. A comprehensive
review of all experimental studies of the Ne III spectrum in

� The full version of Table 2 is only available in electronic
form at http://www.eurphysj.org
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the period 1969 through 1990 can be found in this paper.
Persson et al. [9] combined the earlier accurate measure-
ments of a hollow cathode spectrum [7] with a less accu-
rate but more intense spectrum from a theta pinch. As a
result, they succeeded in making a number of new identifi-
cations and deriving the most complete level system. How-
ever, their list of energy levels has some deficiencies. First
of all, the forbidden transitions observed by Bowen [5,6]
were not included in the procedure of level optimization.
As a result, the levels of the 2s22p4 configuration listed
in [9] disagree with those from [7] (which we consider to be
more accurate) by 0.5 cm−1 to 1.5 cm−1. This leads to dis-
placement of the same order of magnitude for most of the
upper levels. In addition, our analysis showed that some
of the levels given in [9] were not optimized against the
whole set of observed transitions listed in the same paper.
These considerations provide a sufficient reason to revise
the list of levels in reference [9]. In addition, new precise
measurements of more than 100 wavelengths in the vac-
uum ultraviolet (VUV), UV, visible, and infrared regions
[10–12] have become available. In particular, the forbidden
2p4 3P1−3P0 and 3P2−3P1 infrared lines were interfero-
metrically measured by Feuchtgruber et al. [11] with an
unprecedented accuracy of 0.0003 µm in observed spectra
of astronomical objects. Several lines that were masked
in the spectrum recorded by Persson et al. [9] have been
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resolved in spectra of platinum-neon discharges observed
by Sansonetti et al. [10] and in the iron-neon hollow cath-
ode spectrum measured by means of Fourier transform
spectroscopy (FTS) in the present work. In particular,
three combinations involving the 2s22p3(2P◦)4s 3P◦

0 level
have been resolved which were either masked or blended in
Persson’s spectrum. This permitted us to determine the
positions of the levels involved more accurately. For ex-
ample, the displacement of the 2s22p3(2P◦)4s 3P◦

0 level is
about 6 cm−1 compared to Persson’s position [9]. Brosius
et al. [12] used a hollow cathode lamp to excite the extreme
ultraviolet (EUV) spectrum of neon and re-measured sev-
eral Ne III lines against the Ritz standard wavelengths
of Ne II and He II lines. Their measurements significantly
reduce the uncertainties of the energies of the excited con-
figurations relative to the ground state.

Apart from these improved line measurements, the
observed Ne III spectrum was extended in the extreme
ultraviolet (EUV) region by Livingston et al. [13]. Inde-
pendently, Bastin [14] has found that some of the EUV
lines ascribed to Ne IV by Paul and Polster [15] actually
correspond to transitions between known levels of Ne III.
His new assignments of these lines are completely consis-
tent with identifications of Livingston et al. [13]. Most of
the Ne III lines observed in [13] have been identified as
transitions between known levels, although some of the
lines were tentatively ascribed to newly found levels. A
special set of calculations by means of Cowan’s code [22]
performed in the present work has confirmed some of the
tentative assignments made in [13] and yielded a few new
ones.

The main purpose of the present paper is to obtain
more accurate energy levels of Ne III by means of an op-
timization procedure that takes into account the whole
extended set of observed lines, including those that were
precisely measured in our Fourier-transform (FT) spectra,
and from these more accurate levels to derive new wave-
length standards in the VUV region.

2 New FTS measurements

The FT spectra used in the present investigation were
the same as those used in the studies of the Fe II spec-
trum [16]. Two different spectrometers were used: the
f/60 IR–visible–UV FT spectrometer at the National So-
lar Observatory, Tucson, Arizona, for the region above
2800 Å; and the f/25 VUV FT spectrometer at Impe-
rial College, for the region 1500 Å to 3100 Å. The light
source was a high-current hollow cathode of pure iron
run in 100 Pa to 500 Pa (0.5 Torr to 4 Torr) of neon
with dc currents of 0.32 A to 1 A. Since the initial FTS
measurements [16] were optimized for the iron spectra,
the resolution of each spectrum was chosen to provide
roughly 3 to 4 points per full width at half maximum of
the iron lines and ranged from 0.08 cm−1 in the VUV to
0.03 cm−1 in the near UV region. The line widths were
dominated by Doppler broadening and thus were propor-
tional to wave number. For neon lines, the full line width
at half-maximum was greater than the width of the iron

Fig. 1. A portion of a spectrum of an iron-neon hollow cathode
lamp. Four scans were taken with 2 to 3 Torr of neon at a
current of 350 mA.

lines by a factor of 1.7 and varied from approximately
0.5 cm−1 in the VUV to approximately 0.2 cm−1 in the
visible region. Between 15 and 20 scans were co-added for
each spectrum in the visible region, with 4 to 10 scans be-
ing co-added in the UV and the VUV regions. The other
experimental details were described in reference [16].

A portion of an observed spectrum containing some
lines of Ne II and Ne III is presented in Figure 1. The neon
lines usually had a noticeable asymmetry caused by the
presence of approximately 9% of the 22Ne isotope in the
natural neon gas that consists primarily of 20Ne. To verify
that the asymmetry of the lines does not significantly af-
fect the derived positions of peaks, we decomposed several
isolated line profiles into pairs of peaks. The difference of
the wave numbers obtained for the strongest peak in each
of the decomposed profiles from the values obtained by fit-
ting the profile with a single peak was always much smaller
than the measurement uncertainty.

Apart from the asymmetry, the neon lines could usu-
ally be distinguished from the iron lines by their larger
width. However, both the larger width and asymmetry can
also be caused by blending of two or more lines. Thus, we
excluded from our list of Ne III lines those lines identified
in the FTS spectra that could possibly be blended with
lines of Fe I or Fe II. Such possible blends were identified
by existence of an allowed dipole transition between two
opposite-parity levels of Fe I or Fe II [17] with a wave-
length within the half-width of the measured Ne III line.

The uncertainties of the wave numbers measured by
FTS consist of two qualitatively different contributions,
the statistical uncertainty δσstat and the residual uncer-
tainty δσr which is in turn a combination of the calibra-
tion uncertainty (which is dominant) and other system-
atic errors such as illumination shifts [16]. For iron lines,
it was determined in reference [16] that the statistical un-
certainty (one standard deviation) can be approximately
described by the following formula:

δσstat(Fe) ≈ W/(2S/N), (1)
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where W is the line width (full width at half maximum),
and S/N is the signal-to-noise ratio of the line. This sim-
plified formula was derived from a more rigorous relation
given by Brault [18]:

δσstat = kW/((S/N)N1/2
w ), (2)

where Nw is the number of statistically-independent data
points per W , and k is a coefficient depending on the type
of line profile used in the deconvolution procedure, the
recommended value of which is 0.75. The simplified for-
mula (1) takes into account the fact that different scans
that were co-added in our spectrograms had different lim-
ited wavelength spans and different resolution. The reso-
lution of the scans was varied so that the average num-
ber of data points per iron line width was 3 to 4. As it
follows from equation (2), in order to account for the in-
creased number of data points per the larger width of the
neon lines, the right-hand side of equation (1) should be
divided by the square root of the mean ratio of widths
of neon and iron lines. Thus, for neon lines equation (1)
should be re-written as follows:

δσstat(Ne) ≈ W/(2.6S/N). (3)

In the present work we used equation (3) to estimate
δσstat for neon lines. The value of δσstat varied between
0.0005 cm−1 for the strongest Ne III lines and 0.06 cm−1

for the weakest lines.
The residual uncertainty δσr, according to refer-

ence [16], was approximately 5 × 10−8σ for the visible
region and 1 × 10−7σ for the VUV and UV regions. The
Fe measurements in reference [16] were calibrated with re-
spect to 26 Ar II lines between 4300 Å and 5160 Å. The
wave numbers for these lines were taken from Norlén [19],
who used Fabry-Perot interferometry to measure them
with respect to standard lines in 86Kr. The Ar II lines used
have since been remeasured by Whaling et al. [20] using
Fourier transform spectroscopy with molecular CO lines
as wave number standards. The wave numbers of Whaling
et al. are systematically higher than those of Norlén by 6.7
parts in 108. Since Whaling’s wavenumbers are of higher
accuracy than those of Norlén, we have increased the wave
numbers of Ne III lines measured in the Fe/Ne spectra by
a factor of 6.7 × 10−8σ to bring them on the scale of
Whaling et al. [20]. The total uncertainty of the measured
wave numbers ranged from 0.004 cm−1 for the strongest
lines to 0.06 cm−1 for the weakest lines with signal-to-
noise ratio 3 to 4.

3 Analysis of possible Stark shifts

Stark shifts and pressure shifts might affect the wave num-
bers of the lines in our spectra and in the other studies
used in this compilation. To detect these shifts, we have
compared the wave numbers in our Fe/Ne spectra mea-
sured with different pressures of neon and also with the
grating measurements of Sansonetti et al. [10]. The results
of this comparison are presented in Figure 2. Panel (a)
shows the shifts between two of our FT spectra: one taken

Fig. 2. Wave-number differences between Ne III lines mea-
sured in different spectra. (a) Shifts between lines measured
in the present work at medium (2 Torr to 3 Torr) and low
(0.5 Torr) pressures of neon in the Fe/Ne hollow-cathode dis-
charge; (b) shifts between the grating spectrum of a Pt/Ne
hollow cathode [10] and our FT spectrum of a Fe/Ne hol-
low cathode discharge operated at medium pressure (2 Torr
to 3 Torr). The legends describe the orbital momentum of the
outer electron for the upper energy level of a transition: (�) p
shell, (�) d shell, and (◦) f shell.

at medium neon pressures (2 Torr to 3 Torr), and the
other taken at roughly 0.5 Torr neon pressure. Panel (b)
shows the shifts between the lines listed in the Pt/Ne
atlas [10] and our FT spectrum taken at medium pres-
sure. The lines given in the Pt/Ne atlas [10] were mea-
sured using two different lamps, one with roughly 5 Torr
of neon and the other with roughly 2 Torr of neon. The
line shifts are plotted in Figure 2 vs. the energy of the up-
per level of the transition. If the Stark shifts were present
in the light sources, they would be largest for the lines
with the highest upper energy and angular momentum.
This would result in increased scatter for higher excita-
tion energies. Figure 2 shows that there is no such trend
in our spectra. Furthermore, if Stark shifts were present,
they would be accompanied by a noticeable broadening
of lines originating from levels with high angular momen-
tum. We observed only a few weak lines originating from
the 4f , 5f , 7f , and 7g shells. Among these lines, only
the 2p3(4S◦)3d 3D◦

3−2p3(4S◦)4f 3F4 line at 1946.0024 Å
had signal to noise ratio greater than 4. This line had
approximately the same relative width as the rest of the
neon lines. The other lines originating from the nf and ng
shells were either too weak or blended.
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Although there was no direct measurement of Stark
shifts in the work of Persson et al. [9], in an earlier work [7]
Persson mentioned that even the highest observed mem-
bers of the 4f−ng series showed no noticeable broadening
in the Ne II spectra obtained with a hollow cathode lamp
operated at very low pressures (0.05 Torr to 0.08 Torr).
Since Persson et al. [9] used the same hollow-cathode light
source as Persson [7], there should be no noticeable Ne III
line broadening in reference [9]. This is also supported by
the fact that the stated uncertainty of the wavelengths is
approximately the same in reference [9] as in reference [7],
implying that the line widths were similar for Ne II and
Ne III.

Thus, we conclude that there is no evidence that any of
the spectra used in this work exhibit Stark shifts exceeding
the wavelength-measurement uncertainty.

4 Optimization procedure

In order to obtain the optimized energy levels, one needs
to know the experimental uncertainties of each measured
spectral line. Wherever possible, we used estimates of
these uncertainties given by the authors of the papers in
which the lines were measured. In some cases, the au-
thors gave uncertainties individually for each line [5,12]
or indicated an unambiguous procedure describing how to
derive them from their tables [10]. In reference [10], the
wavelength uncertainty was 0.002 Å for the wavelengths
given with three digits after the decimal point (those were
measured on photographic plates) and 0.01 Å to 0.02 Å
for the wavelengths given with two digits after the deci-
mal point (measured using a scanning photomultiplier in
a photon-counting mode).

In other papers, e.g. reference [9], only some general
notes were given on the experimental uncertainties for in-
tense separated lines with symmetrical profiles. Unfortu-
nately, Persson et al. [9] did not indicate exactly which
of the lines listed by them were measured in the hollow-
cathode spectrum and which in the theta-pinch. The cor-
responding uncertainties, according to the authors’ note,
should differ by an order of magnitude (a few thousandths
and few hundredths of an angstrom). Nevertheless, all
wavelengths were given in reference [9] with the same num-
ber of digits after the decimal point. We estimated the
uncertainties of the lines from reference [9] based on the
analysis of deviations of observed wavelengths from those
derived from the level values listed in the same paper. As
it appears from this analysis, the most intense lines from
reference [9] have a standard deviation of 0.003 Å through-
out the entire spectral region 1250 Å to 4500 Å where they
are located, provided they are not blended or affected by
other lines. These lines have intensities greater than 15 on
the scale used in reference [9] (300 on our scale; see below),
with the exception of the line at 2639.13 Å with intensity
20 (400 on our scale) that deviated by 0.008 Å from its cal-
culated position. The observed intensity and wavelength of
this line were probably affected by a stronger neighboring
line at 2639.1674 Å. Our calculations with Cowan’s codes
showed that the intensity of the 2639.13 Å line should be

equal to approximately 1/15th of the 2639.1674 Å line,
while reference [9] reports the intensity ratio of 2:3. Ob-
viously, the 2639.13 Å line should be a small hump on
the shoulder of the 2639.1674 Å line. Thus, we assumed a
larger uncertainty of 0.03 Å for this line.

We divided the line list of reference [9] into several cat-
egories based on their character (as specified in Tabs. II,
III, and IV of Ref. [9]) and wavelength region. The average
deviations of the lines with no special character (blended,
affected, etc.) having intensities less than 15 on the scale
of reference [9] were distinctly different in the wavelength
regions 300 Å to 1490 Å (0.006 Å), 1491 Å to 2738 Å
(0.009 Å), and 2738 Å to 6900 Å (0.02 Å). The lines de-
noted as wide, unresolved, blended, affected, etc. displayed
an average deviation of 0.05 Å regardless of their inten-
sity. Although all wavelengths were given in reference [9]
with three digits after the decimal point, we accepted the
average deviations mentioned above as the measurement
uncertainties of these lines and rounded the wavelength
values accordingly.

Livingston et al. [13] stated that their experimental ab-
solute wavelength uncertainties do not exceed 0.l Å. This
is consistent with the line widths of approximately 0.2 Å.
We adopted the uncertainty of 0.1 Å for isolated lines but
doubled this value for the lines marked in reference [13] as
blended, as well as for multiply classified lines.

To find the new values of energy levels based on the
whole list of observed wavelengths, we used a new com-
puter program, “LOPT”, for optimization of energy level
values. This program is described in the Appendix.

To obtain a correct optimization for blended lines, one
needs to use proper weights for components of the blend.
For example, the center of gravity of a line that is a blend
of two transitions with different intensities is not located
equidistant to the two components; it shifts towards the
component with greater intensity. Thus, in order to cor-
rectly represent the influence of the blends on the positions
of their upper and lower levels, one needs to know the rel-
ative intensities of the component transitions. Although
this information is rarely available from experiments, it
can be obtained by theoretical calculations. In the present
work, we calculated the relative intensities of the lines us-
ing Cowan’s codes [22] with fitted Slater parameters, as-
suming the Boltzmann distribution of level populations.
The parametric fitting procedure is described below in
Section 7. Although the real level population in a hollow-
cathode plasma is rather far from the Boltzmann distri-
bution, the errors introduced in the resulting levels by
blended lines are usually small because of the low weight
ascribed to blended lines. In addition, relative intensities
of the lines originating from the same upper level do not
depend on the population distribution. In the Ne III spec-
trum, most of the unresolved blends belong to this cate-
gory.

5 Energy levels

The list of energy levels obtained as a result of the opti-
mization procedure is presented in Table 1.
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Table 1. Energy levels of Ne III.

Configuration Terma J Energyb (cm−1) Uncert.c (cm−1) Leading percentagesd

2s22p4 3P 2 0.000 fixed 100%

1 642.876 0.013 100%

0 920.550 0.013 100%

2s22p4 1D 2 25840.72 0.2 100%

2s22p4 1S 0 55752.7 0.9 98%

2s2p5 3P◦ 2 204290 .0 1.1 99%

1 204872 .6 1.1 99%

0 205194 2 99%

2s2p5 1P◦ 1 289478 .6 1.0 98%

2s22p3(4S◦)3s 5S◦ 2 309881.041 + x 2 100%

2s22p3(4S◦)3s 3S◦ 1 319431.261 0.9 100%

2s22p3(4S◦)3p 5P 1 348395.524 + x 0.004 99%

2 348426.628 + x 0.004 99%

3 348479.578 + x 0.004 99%

2s22p3(2D◦)3s 3D◦ 3 353133.605 0.05 100%

2 353163.013 0.05 100%

1 353183.152 0.05 100%

2s22p3(4S◦)3p 3P 1 356751.837 0.004 95%

0 356761.864 0.004 95%

2 356762.797 0.004 95%

2s22p3(2D◦)3s 1D◦ 2 357928.972 0.06 100%

2s22p3(2P◦)3s 3P◦ 1 374489.507 0.05 98%

0 374490.160 0.05 98%

2 374496.068 0.05 98%

2s22p3(2P◦)3s 1P◦ 1 379826.356 0.06 98%

2s22p3(2D◦)3p 1P 1 387962.12 0.06 86% 7% (2P◦)3p 1P

2s22p3(2D◦)3p 3D 1 389044.544 0.05 91% 6% (2D◦)3p 1P

2 389055.543 0.05 97%

3 389124.913 0.05 97%

2s22p3(2D◦)3p 3F 2 391400.239 0.05 100%

3 391415.686 0.05 99%

4 391436.251 0.05 100%

2s22p3(2D◦)3p 1F 3 392801.818 0.06 100%

2s22p3(4S◦)3d 5D◦ 4 394681.481 + x 0.010 100%

3 394684.08 + x 0.02 100%

2 394687.67 + x 0.03 100%

1 394690.72 + x 0.04 100%

0 394692.40 + x 0.08 100%
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Table 1. Continued.

Configuration Terma J Energyb (cm−1) Uncert.c (cm−1) Leading percentagesd

2s22p3(4S◦)3d 3D◦ 1 398178.14 0.04 99%

2 398182.766 0.03 99%

3 398195.511 0.02 99%

2s22p3(2D◦)3p 3P 2 398972.658 0.05 92%

1 399068.682 0.05 93%

0 399111.356 0.05 93%

2s22p3(2D◦)3p 1D 2 406332.411 0.05 90% 8% (2P◦)3p 1D

2s22p3(2P◦)3p 3S 1 409873.45 0.06 98%

2s22p3(2P◦)3p 3D 3 412348.045 0.06 97%

2 412375.508 0.05 96%

1 412376.48 0.05 96%

2s22p3(2P◦)3p 1P 1 414229.20 0.06 90% 8% (2D◦)3p 1P

2s22p3(2P◦)3p 3P 0 416723.444 0.05 95%

1 416753.058 0.05 94%

2 416798.087 0.06 94%

2s22p3(4S◦)4s 5S◦ 2 416914.74 + x 0.07 100%

2s22p3(4S◦)4s 3S◦ 1 419827.35 0.04 100%

2s22p3(2P◦)3p 1D 2 420244.544 0.06 90% 7% (2D◦)3p 1D

2s22p3(4S◦)4p 5P 1 430067.99 + x 0.06 100%

2 430078.62 + x 0.04 100%

3 430095.71 + x 0.04 100%

2s22p3(2P◦)3p 1S 0 433011.918 0.06 95%

2s22p3(4S◦)4p 3P 2 434325.760 0.02 95%

1 434343.564 0.03 95%

0 434359.09 0.14 95%

2s22p3(2D◦)3d 3F◦ 2 435515.599 0.05 99%

3 435555.356 0.05 99%

4 435608.467 0.06 98%

2s22p3(2D◦)3d 1S◦ 0 435583.09 0.09 100%

2s22p3(2D◦)3d 3G◦ 5 436547.744 0.05 100%

4 436574.426 0.05 99%

3 436597.709 0.05 99%

2s22p3(2D◦)3d 1G◦ 4 436771.674 0.06 100%

2s22p3(2D◦)3d 3D◦ 3 436832.07 0.06 98%

2 436901.63 0.05 98%

1 436947.05 0.06 98%

2s22p3(2D◦)3d 1P◦ 1 439044.19 0.06 97%
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Table 1. Continued.

Configuration Terma J Energyb (cm−1) Uncert.c (cm−1) Leading percentagesd

2s22p3(2D◦)3d 3P◦ 2 439573.05 0.07 99%

1 439694.78 0.07 99%

0 439747.80 0.10 99%

2s22p3(2D◦)3d 1D◦ 2 439748.13 0.06 97%

2s22p3(2D◦)3d 3S◦ 1 440051.58 0.07 100%

2s22p3(2D◦)3d 1F◦ 3 440887.276 0.06 99%

2s22p3(4S◦)4d 5D◦ 4 446375 .1 + x 0.3 100%

2 446375.17 + x 0.2 100%

3 446375.73 + x 0.2 100%

2s22p3(4S◦)4d 3D◦ 1 448223.06 0.12 98%

2 448233.86 0.11 98%

3 448251.88 0.08 98%

2s22p3(4S◦)4f 5F 5 449552.15 + x 0.10 100%

4 449552.39 + x 0.11 100%

3 449552.77 + x 0.11 100%

1 449552.9 + x 0.3 100%

2 449553.0 + x 0.3 100%

2s22p3(4S◦)4f 3F 4 449582.924 0.04 100%

3 449583.48 0.12 100%

2 449584.03 0.10 100%

2s22p3(4S◦)5s 5S◦ 2 456498 .3 + x 0.09 100%

2s22p3(2P◦)3d 3F◦ 4 457596.833 0.05 98%

3 457666.99 0.07 97%

2 457713.80 0.06 96%

2s22p3(4S◦)5s 3S◦ 1 457782 .4 0.2 100%

2s22p3(2D◦)4s 3D◦ 2 457966.99 0.09 57% 25% (2P◦)3d 3D◦

3 457991.30 0.10 69% 30% (2P◦)3d 3D◦

1 458001.59 0.10 70% 29% (2P◦)3d 3D◦

2s22p3(2P◦)3d 1D◦ 2 458095.49 0.06 58% 13% (2D◦)4s 3D◦

2s22p3(2P◦)3d 3P◦ 0 458285.80 0.13 98%

1 458335.50 0.11 98%

2 458442.48 0.09 90% 6% (2P◦)3d 1D◦

2s22p3(2P◦)3d 3D◦ 1 460114.91 0.09 68% 29% (2D◦)4s 3D◦

2 460126.70 0.08 68% 30% (2D◦)4s 3D◦

3 460138.75 0.08 67% 30% (2D◦)4s 3D◦

2s22p3(2P◦)3d 1F◦ 3 460120.25 0.07 97%

2s22p3(2D◦)4s 1D◦ 2 460688.20 0.06 82% 17% (2P◦)3d 1D◦

2s22p3(4S◦)5p 5P 1 462473.29 + x 0.15 100%

2 462476.73 + x 0.14 100%

3 462482.8 + x 0.2 100%
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Table 1. Continued.

Configuration Terma J Energyb (cm−1) Uncert.c (cm−1) Leading percentagesd

2s22p3(2P◦)3d 1P◦ 1 462932.64 0.12 97%

2s22p3(4S◦)5p 3P 2 463856.46 0.08 95%

1 463862.3 0.2 95%

2s22p3(4S◦)5d 5D◦ 4 470197 .0 + x 0.3 100%

3 470198 .9 + x 0.9 100%

2 470199 .5 + x 0.9 100%

2s22p3(4S◦)5d 3D◦ 2 471181 .0 0.6 99%

3 471181 .0 0.4 99%

2s22p3(2D◦)4p 3D 1 471233.53 0.06 86% 13% (2D◦)4p 1P

2 471273.90 0.06 99%

3 471283.81 0.05 99%

2s22p3(2D◦)4p 1P 1 471385.12 0.11 86% 13% (2D◦)4p 3D

2s22p3(4S◦)5f 5F 471871.5 + x 0.4 100%

2s22p3(4S◦)5f 3F 4 471889.71 0.09 98%

3 471890.19 0.11 98%

2 471890.24 0.14 99%

2s22p3(4S◦)5g 5G◦ 472004 .1 + x 0.4 100%

2s22p3(4S◦)5g 3G◦ 5 472004.38 0.05 100%

4 472004.44 0.12 100%

3 472004.52 0.11 100%

2s22p3(2D◦)4p 3F 4 472013.12 0.06 98%

3 472020.08 0.06 98%

2 472027.94 0.05 98%

2s22p3(2D◦)4p 1F 3 472473.64 0.06 100%

2s22p3(2D◦)4p 3P 2 473863.42 0.09 93%

1 473932.50 0.12 94%

0 473963.62 0.12 94%

2s22p3(4S◦)6s 5S◦ 2 475542.98 + x 0.13 100%

2s22p3(2D◦)4p 1D 2 477534.680 0.06 96%

2p6 1S 0 478826 2 95%

2s22p3(2P◦)4s 3P◦ 1 479827 .5 0.2 97%

2 479831 .5 0.2 97%

0 479836.38 0.11 97%

2s22p3(2P◦)4s 1P◦ 1 481288 .0 0.2 96%

2s22p3(4S◦)6d 3D◦ 483600 200 99%
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Table 1. Continued.

Configuration Terma J Energyb (cm−1) Uncert.c (cm−1) Leading percentagesd

2s22p3(4S◦)6f 5F 484001.3 + x 0.7 100%

2s22p3(4S◦)6f 3F 3 484018.8 0.4 100%

4 484019.1 0.4 100%

2 484019.5 0.3 100%

2s22p3(4S◦)6g 5G◦ 484083 .8 + x 0.5 100%

2s22p3(4S◦)6g 3G◦ 3 484084 .0 0.5 100%

4 484084 .0 0.5 100%

5 484084 .0 0.5 100%

2s22p3(4S◦)7s 5S◦ 2 486165 .7 + x 0.3 100%

2s22p3(2D◦)4d 3F◦ 3 487624 .9 0.13 99%

4 487633 .1 0.3 98%

2s22p3(2D◦)4d 3G◦ 5 487908.04 0.08 100%

4 487930.17 0.08 98%

3 487953.47 0.07 99%

2s22p3(2D◦)4d 1G◦ 4 488046.23 0.13 99%

2s22p3(2D◦)4d 3D◦ 488100 600 96%

2s22p3(2D◦)4d 3P◦ 489000 500 98%

2s22p3(2D◦)4d 3S◦ 1 489000 ? 800 99%

2s22p3(2D◦)4d 1P◦ 1 489200 900 97%

2s22p3(2D◦)4d 1D◦ 2 489200 500 99%

2s22p3(2D◦)4d 1F◦ 3 489900 400 99%

2s22p3(4S◦)7d 3D◦ 490000 ? 500 97%

2s22p3(2D◦)4f 3G 5 490789.83 0.10 87% 8% (2D◦)4f 3H

4 490790.7 0.2 45% 3F 44% (2D◦)4f 3G

3 490794.29 0.14 41% 30% (2D◦)4f 3D

2s22p3(2D◦)4f 3D 2 490798.4 0.15 37% 1D 36% (2D◦)4f 3D

3 490800.17 0.11 54% 35% (2D◦)4f 3G

1 490888.1 1.3 95%

2s22p3(2D◦)4f 3F 4 490800.19 0.11 51% 47% (2D◦)4f 3G

3 490815.12 0.10 71% 17% (2D◦)4f 3G

2 490837.45 0.11 68% 28% (2D◦)4f 3D

2s22p3(2D◦)4f 1P 1 490811.32 0.14 90% 10% (2D◦)4f 3P

2s22p3(2D◦)4f 1D 2 490819.04 0.13 59% 36% (2D◦)4f 3D

2s22p3(2D◦)4f 3H 5 490832.60 0.09 53% 34% (2D◦)4f 1H

6 490833.55 0.11 100%

4 490885.32 0.11 95%
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Table 1. Continued.

Configuration Terma J Energyb (cm−1) Uncert.c (cm−1) Leading percentagesd

2s22p3(2D◦)4f 1G 4 490833.93 0.10 84% 9% (2D◦)4f 3G

2s22p3(2D◦)4f 3P 1 490835.4 0.2 87% 9% (2D◦)4f 1P

0 490840.7 0.2 100%

2 490894.98 0.14 99%

2s22p3(2D◦)4f 1F 3 490853.30 0.10 88% 6% (2D◦)4f 3G

2s22p3(2D◦)4f 1H 5 490882.41 0.09 61% 39% (2D◦)4f 3H

2s22p3(4S◦)7f 5F 491313.3 + x 0.3 100%

2s22p3(4S◦)7f 3F 4 491326.9 0.5 100%

2s22p3(4S◦)7g 5G◦ 491369 .4 + x 0.6 100%

2s22p3(4S◦)7g 3G◦ 3 491369 .6 0.5 100%

4 491369 .6 0.5 100%

5 491369 .6 0.5 100%

2s22p3(2P◦)4p 3S 1 492224.55 0.2 98%

2s22p3(4S◦)8s 5S◦ 2 492692 .1 + x 0.4 100%

2s22p3(2P◦)4p 3D 1 492947.4 0.2 96%

3 492947.9 0.2 98%

2 492954.3 0.14 98%

2s22p3(2P◦)4p 1P 1 493158.9 0.2 94%

2s22p3(2P◦)4p 3P 0 493572.1 0.3 94%

1 493596.0 0.3 93%

2 493603.4 0.3 94%

2s22p3(2P◦)4p 1D 2 495312.2 0.3 96%

2s22p3(4S◦)8f 5F 496060.0 + x 0.4 100%

2s22p3(2D◦)5s 3D◦ 3 497994.44 0.09 100%

2 498020.88 0.10 100%

1 498039.74 0.12 100%

2s22p3(2D◦)5s 1D◦ 2 498658.714 0.07 100%

2s22p3(2D◦)5p 3F 4 504103.2 0.2 100%

3 504115.9 0.2 99%

2 504131.3 0.2 100%

2s22p3(2P◦)4d 1F◦ 3 510300 200 97%

2s22p3(2P◦)4d 1P◦ 1 511100 ? 400 57% 42% (2D◦)5d 1P◦

2s22p3(2P◦)4f 3D 1 511901.1 1.5 95%

2 511907.92 0.11 87% 7% (2P◦)4f 1D

3 511933.8 0.3 84% 6% (2P◦)4f 3F
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Table 1. Continued.

Configuration Terma J Energyb (cm−1) Uncert.c (cm−1) Leading percentagesd

2s22p3(2P◦)4f 1D 2 511953.1 0.2 67% 26% (2P◦)4f 3F

2s22p3(2P◦)4f 3G 5 511960.0 0.3 96%

4 511966.3 0.3 80% 16% (2P◦)4f 3F

3 511974.6 0.4 74% 14% (2P◦)4f 1F

2s22p3(2P◦)4f 1G 4 511996.8 1.1 69% 20% (2P◦)4f 3F

2s22p3(2P◦)4f 1F 3 512036.7 0.14 46% 3F 40% (2P◦)4f 1F

2s22p3(2P◦)4f 3F 2 512041.8 0.3 71% 21% (2P◦)4f 1D

3 512058.43 0.14 38% 37% (2P◦)4f 1F

4 512063.2 0.2 62% 26% (2P◦)4f 1G

2s22p3(2D◦)5d 1F◦ 3 512900 ? 600 98%

2s22p3(2D◦)5f 3H 5 513139.8 0.3 59% 41% (2D◦)5f 1H

6 513141.3 0.2 100%

4 513159.7 0.2 100%

2s22p3(2D◦)5f 3G 5 513154.05 0.14 97%

4 513195.13 0.08 63% 30% (2D◦)5f 3F

2s22p3(2D◦)5f 1H 5 513197.2 0.2 59% 41% (2D◦)5f 3H

2s22p3(2D◦)5f 1G 4 513210.29 0.13 86% 10% (2D◦)5f 3G

2s22p3(2D◦)5g 3I◦ 5 513245 .5 0.2 91% 5% (2D◦)5g 1H◦

6 513245 .5 0.2 49% 42% (2D◦)5g 1I◦

7 513245 .5 0.2 100%

2s22p3(2D◦)6g 3I◦ 5 525323 .9 0.6 89% 6% (2D◦)6g 1H◦

6 525323 .9 0.6 48% 41% (2D◦)6g 1I◦

7 525323 .9 0.6 100%

2s22p3(2P◦)5d 1P◦ 1 534500 ? 500 96%
aTerm labels assigned to levels having a highly mixed composition are somewhat arbitrary. See discussion in the text.
bThe symbols after the energy have the following meaning: +x – position of the quintet level system relative to the singlet
and triplet levels was fixed based on the very small calculated separation between the 5G◦ and 3G◦ terms of the 2s22p3(4S◦)ng
configurations (see text). The value of x should not exceed 2 cm−1; ? – identification of lines determining this level is uncertain.
c Uncertainties of the levels with energies below 320000 cm−1 are given relative to the ground state. Uncertainties of the higher-
energy singlet and triplet levels are given relative to the 2s22p3(4S◦)3s3S◦

1 level, and uncertainties of the quintet levels are given
relative to the 2s22p3(4S◦)3s5S◦

2 level.
dPercentage compositions were calculated by parametric fitting calculations using Cowan’s codes [22] (see text).

The levels of the Ne III 2s22p4 ground configuration
given in Table 1 are more accurate than in reference [9], as
they were optimized with the use of additional precisely
measured lines. They are in good agreement with values
given by Persson [7], although their difference from the
values given in reference [9] is in the range –1.0 cm−1

to +5.2 cm−1. The uncertainty of the 2p4 1D2 level is
less than 0.2 cm−1 relative to the ground state; the lev-
els 3P1 and 3P0 are determined with an uncertainty of
0.002 cm−1 relative to each other and 0.013 cm−1 rela-

tive to the ground state. A partial Grotrian diagram illus-
trating the derivation of the 2p4 1S0 level is presented in
Figure 3. The 2p4 1S0 level is directly connected with the
2p4 1D2 level by a line at (3342.5±0.3) Å which is blended
with an intercombination line of Cl III, as observed in neb-
ular spectra by Bowen [6]. Another, more precise, connec-
tion of the 2p4 1S0 level with the lower levels of the ground
configuration is provided by the (427.8521±0.0018) Å line
(2s22p4 1S0 − 2s2p5 1P◦

1) measured by Brosius et al. [12],
combined with a direct transition to the 2p4 1D2 level



12 The European Physical Journal D

Fig. 3. A partial Grotrian diagram showing the main transi-
tions from which the 2p4 1S0 level is derived. The numbers
next to the lines connecting the levels are transition wave-
lengths in angstroms. The lines responsible for the improve-
ment in accuracy of this level value in the current work are
those at 427.8521 ± 0.0018 Å (2s22p4 1S0 − 2s2p5 1P◦

1) and
379.3059 ± 0.0013 Å (2p4 1D2 − 2s2p5 1P◦

1 ) measured by
Brosius et al. [12].

by the 379.3059 ± 0.0013 Å line [12] and several indirect
paths, e.g. 1015.392 Å (3p1P1) + 2874.46 Å (3s3D◦

1) +
2183.222 Å (3p3P2) + 513.657 Å (2s2p5 3P◦

2) + 489.505 Å
(2p4 3P2) lines. The weighted average of the energy of
the 2p4 1S0 level obtained using these different paths is
(55752.7 ± 0.9) cm−1. This should be compared with the
value 55747.5 cm−1 from Persson et al. [9], who used only
their own less precise wavelengths for the 379 Å and 427 Å
lines and did not include the 3342.5 Å and 3868.76 Å lines
in the level optimization.

It is difficult to adequately represent the uncertain-
ties of the levels, since they differ greatly depending on
the choice of the reference level. Uncertainties of most of
the excited levels relative to the ground state are defined
by the wavelength-measurement uncertainty of the EUV
lines connecting the n = 3 configurations with the ground
configuration 2s22p4 and the first excited configuration
2s2p5. This uncertainty is about 0.9 cm−1, which is only
slightly less than the uncertainty stated in reference [9].
Nevertheless, we consider our level values to be more accu-
rate because of the improved accuracy of the levels of the
ground configuration and the increased number of precise
connections to the ground configuration provided by the
measurements of Brosius et al. [12]. The average shift of
the excited levels relative to the values from reference [9]
is about +1.7 cm−1. The excited levels with n ≥ 3 are de-
termined with much higher accuracy relative to the low-
est levels with n = 3, because the lines connecting them
with each other are located in the wavelength region above
1800 Å. In this wavelength region, precise measurements
are easier to make due to availability of accurate wave-
length standards and high-precision measurement tech-
niques, such as FTS. The excited level system consists

of several “rigid” (i.e. connected by high-precision lines)
groups of levels with much weaker (less precise) connec-
tions between these groups. This means that, although
the relative separations of levels within some groups are as
small as 0.003 cm−1, the positions of these level groups rel-
ative to each other can be uncertain by few tenths cm−1.
Thus, the level uncertainties are given in Table 1 relative
to the ground state only for the levels of the 2s22p4 and
2s2p5 configurations and for the lowest two n = 3 levels,
2s22p3 (4S◦)3s 3S◦

1 and 2s22p3 (4S◦)3s 5S◦
2. Uncertainties

of the higher-lying singlet and triplet levels are given rel-
ative to the 2s22p3 (4S◦)3s 3S◦

1 level, and for the quintet
levels relative to the 2s22p3 (4S◦)3s 5S◦

2 level. To obtain
the uncertainty relative to the ground state, the uncer-
tainties of these higher lying levels should be added in
quadrature to the uncertainty of the reference level.

Although some of the level values in Table 1 have fewer
significant figures than in reference [9], we believe that
they are more accurate. We have chosen to round off the
levels having relative uncertainties greater than 0.15 cm−1

to one decimal place, and those having relative uncertain-
ties between 0.015 cm−1 and 0.15 cm−1 to two decimal
places, in order to better represent their accuracy. Many of
the levels given with three figures after the decimal point
have uncertainties of the order of 0.05 cm−1 relative to the
lowest n = 3 levels. Nevertheless, the extra digit is neces-
sary in order to reproduce the observed precisely measured
wavelengths for some of the lines connecting these levels
with each other.

The quintet term system is not connected with the
ground state by any observed transition. We introduced a
symbol “x” representing an unknown shift of the quintet
system relative to the ground state. In reference [9], the
relative position of the quintet system was fixed by requir-
ing that the (4S◦)ng 5G◦ and 3G◦ terms (n = 5 to 7) co-
incide. We have slightly modified this procedure by intro-
ducing small 5G◦−3G◦ separations (0.2 to 0.3) cm−1, as
indicated by our calculations. According to reference [9],
the value of x should not exceed 2 cm−1.

Percentage eigenvector compositions for the levels
given in Table 1 were computed in the present work.
In most cases they are in good agreement with the re-
sults obtained by Persson et al. [9]. If the configuration
or parent term of the component is omitted in the col-
umn of percentages, it is the same as for the leading
component. According to reference [9], the LS designa-
tions of the 2s22p34f levels are based on the observed
intensity distribution in the 3d− 4f transition array. The
2s22p3(2D◦)4f level with J = 2 at 490798.4 cm−1 can-
not be labeled appropriately in the LS coupling scheme.
We retained the term label 3D assigned in reference [9]
because this character makes one of the most prominent
contributions to it, and this term name is not used for any
other level. Similar considerations apply to the 4f levels at
490790.7 cm−1 (J = 4), 490794.29 cm−1, 512036.7 cm−1,
and 512058.43 cm−1 (J = 3), as well as the 5g and 6g
levels at 513245.5 cm−1 and 525323.9 cm−1 (J = 6). For
these levels, the coupling is too far from pure LS coupling
for the labels to have physical meaning.
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Since the (4S◦)ng 5G◦ levels determined in the present
study are systematically higher than found in reference [9],
the ionization potential determined in reference [9] from
this series must be revised. We re-determined the ion-
ization potential using the same procedure of fitting the
polarization formula as described in reference [9] using
two series, (4S◦)ng 5G◦ and (4S◦)ng 3G◦. The results for
these two series differ by only 0.4 cm−1. However, since
the (4S◦)ng 3G◦ series does not involve the uncertainty of
the 5G◦−3G◦ separation, its limit has lower uncertainty.
Our final value of the ionization potential derived from the
(4S◦)ng 3G◦ series is (511543.5±2.7) cm−1 (63.4233 eV±
0.0003 eV). To obtain the value in electron volts, we ap-
plied the conversion factor 8065.54445(69) cm−1/eV [23].

6 Compiled list of observed lines of Ne III

The list of observed lines of Ne III used in the level opti-
mization is presented in Table 2.

To avoid zero intensity values, intensities of the
lines from Persson et al. [9] were converted as
Inew = 20Iold + 2. This conversion results in integer num-
bers comparable with those observed in the EUV range
by Livingston et al. [13]. The same conversion was done
with intensities from Boyce [3] in order to bring them to
the same scale in the region 350 Å to 500 Å. Intensities
from von Keussler [2] were multiplied by 10, while those
from references [12,14] were divided by 5. For the lines
measured in reference [10] and in the present work that
were also observed by Persson et al. [9], we used the in-
tensity values from reference [9] converted as described
above. After this conversion, the relative intensities of the
lines appear to be approximately on the same scale in the
entire spectral range.

All lines published by de Bruin [1] were re-measured
with higher accuracy by Persson et al. [9]. The authors of
reference [9] also revised about 30% of de Bruin’s identi-
fications.

As already mentioned above (see Sect. 4), numer-
ous wavelengths from Persson et al. [9] deviate strongly
(by 0.03 Å to 0.2 Å) from the Ritz wavelengths derived
from the energy levels given in [9]. Nevertheless, they
were accepted by the authors of reference [9], implying
that the measurement uncertainties were consistent with
these large deviations. Both observed and calculated wave-
lengths have been rounded off according to their estimated
uncertainty in Table 2, in order to represent the accuracy
better.

In the present compilation, 88 wavelengths from
Persson et al. [9] were replaced with those measured more
accurately in reference [10] and in the present work. Their
uncertainties were discussed above in Section 4. Several
lines listed as masked by Persson et al. [9] have been re-
solved in the spectra observed in reference [10] and in the
present work. In particular, three combinations involving
the 2s22p3(2P◦)4s 3P◦

0 level have been resolved that were
either masked or blended in Persson’s spectrum.

We have replaced several VUV wavelengths measured
by Persson et al. [9], von Keussler [2], and Boyce [3] with

newer more precise values measured by Brosius et al. [12].
The observed wavelengths of the blended lines reported
by Brosius et al. [12] at 267.4884 Å, 283.1745 Å, and
283.6651 Å should be used with caution. The components
of these blends have a larger wavelength spread than the
measurement uncertainty declared in reference [12]. For
such blended lines, the position of the measured line cen-
ter may depend on the excitation conditions and method
of locating the line center.

Thomas and Neupert [24] reported the measurement
in a solar spectrum of several VUV lines that they as-
signed to Ne III. In particular, they interpreted the line
they observed at (322.696±0.011) Å as the triplet-quintet
intercombination transition 2p4 3P2 – 2p33s 5S◦

2. Indeed,
the predicted wavelength of this transition derived from
our level optimization procedure is (322.7045±0.0011) Å.
However, it was convincingly argued by Bhatia et al. [25]
that this line, as well as two other lines observed in ref-
erence [24], cannot be attributed to Ne III because it
is too intense. Recent calculations of Froese Fischer and
Tachiev [26] yield a factor-of-three greater transition prob-
ability for the 2p4 3P2–2p33s 5S◦

2 transition than the cal-
culations of Bhatia et al. [25]. However, even with this
increased transition probability, the predicted intensity of
the 2p4 3P2–2p33s 5S◦

2 is an order of magnitude lower than
observed for the 322.696 Å line.

In the column of uncertainties of the Ritz wavelengths
in Table 2, the superscript “s” indicates that the Ritz
wavelength of the line is suggested as a wavelength stan-
dard. There are more than hundred such lines in the region
210 Å to 2000 Å. The lines that we suggest as standards
are strong isolated lines that have an estimated uncer-
tainty of the calculated wavelength between 0.0002 Å and
0.0011 Å. There are many more lines with estimated un-
certainty in the range 0.0003 Å to 0.002 Å that can be
used as reference lines, provided they are well resolved in
the observed spectrum.

7 New identifications in the extreme
ultraviolet range

In order to evaluate the new identifications for Ne III in
the EUV range made recently by Livingston et al. [13] and
also the revisions of the Paul and Polster’s Ne IV assign-
ments [15] made by Bastin [14], we calculated the tran-
sition probabilities of the lines involved. We succeeded in
reproducing the parametric fit made by Persson et al. [9],
having extended it to all known energy levels. We started
from the parameter values given in reference [9], allowing
only the average energies to vary. The fit converged with
level deviations and percentages close to those obtained in
reference [9]. After that, the effective parameters α were
allowed to vary. This fitting converged with significantly
negative values of α. Since these parameters are supposed
to compensate for the unaccounted configuration interac-
tions, it means that the configuration interaction (CI) was
overestimated in the initial fitting. Thus, we decreased the
values of all CI integrals to an empirically found optimum
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Table 2. Observed lines of Ne III (the full version of this table is available in the supplementary Online Material).

λobs Obs. σobs Obs. int. λRitz Ritz Transitiond Ae (s−1) Ref.
(Å)a unc.(Å) (cm−1) and char.b (Å) unc.c(Å) λf Ag

211.5 0.1 472810 2 211.4979 0.0004s 2s22p4 1D2 – (2D◦)5s 1D◦
2 13

212.2 0.2 471250 5bl 212.2327 0.0005s 2s22p4 3P2 – (4S◦)5d 3D◦
3 13

212.5 0.2 470590 9bl 212.5226 0.0005s 2s22p4 3P1 – (4S◦)5d 3D◦
2 13

217.777 0.010 459190 3bl 217.7727 0.0005s 2s22p4 3P0 – (2P◦)3d 3D◦
1 2.0e+09 C 15 26

218.131 0.010 458440 5bl 218.1299 0.0005s 2s22p4 3P2 – (2P◦)3d 3P◦
2 3.9e+09 B 15 26

218.184 0.010 458330 2bl 218.1808 0.0005s 2s22p4 3P2 – (2P◦)3d 3P◦
1 2.2e+09 B 15 26

223.6 0.1 447230 2 223.5623 0.0005s 2s22p4 3P0 – (4S◦)4d 3D◦
1 13

227.5 0.2 439560 12bl 227.2461 0.0005s 2s22p4 3P2 – (2D◦)3d 3S◦
1 8.2e+09 C 13 26

230.0 0.1 434780 2 229.9657 0.0005s 2s22p4 1D2 – (2D◦)4s 1D◦
2 13

230.3 0.1 434220 6 230.2664 0.0005s 2s22p4 1D2 – (2P◦)3d 1F◦
3 1.1e+10 B 13 26

231.3 0.1 432340 4 231.3450 0.0005s 2s22p4 1D2 – (2P◦)3d 1D◦
2 4.6e+09 C 13 26

238.2 0.1 419820 3 238.1932 0.0006s 2s22p4 3P2 – (4S◦)4s 3S◦
1 13

240.9 0.1 415110 18 240.9368 0.0006s 2s22p4 1D2 – (2D◦)3d 1F◦
3 2.0e+10 C 13 26

241.6 0.1 413910 14 241.5999 0.0006s 2s22p4 1D2 – (2D◦)3d 1D◦
2 1.5e+10 C 13 26

242.0 0.1 413220 12 242.0115 0.0006s 2s22p4 1D2 – (2D◦)3d 1P◦
1 1.3e+10 C 13 26

245.6 0.1 407170 7 245.5917 0.0008s 2s22p4 1S0 – (2P◦)3d 1P◦
1 3.0e+10 D 13 C

251.73 0.02 397260 20 251.7258 0.0006s 2s22p4 3P0 – (4S◦)3d 3D◦
1 6.3e+09 C 2 26

267.026 0.002 374496 30bl 267.0255 0.0007s 2s22p4 3P2 – (2P◦)3s 3P◦
2 2.8e+09 C 12 26

267.687 0.002 373571 20 267.6882 0.0007s 2s22p4 3P0 – (2P◦)3s 3P◦
1 1.4e+09 C 12 26

282.495 0.002 353989 20 282.4973 0.0008s 2s22p4 1D2 – (2P◦)3s 1P◦
1 3.3e+09 C 12 26

283.871 0.005 352273 30 283.8791 0.0008s 2s22p4 3P0 – (2D◦)3s 3D◦
1 2.0e+09 C 12 26

301.1242 0.0013 332088.9 90 301.1248 0.0009s 2s22p4 1D2 – (2D◦)3s 1D◦
2 9.2e+09 C 12 26

313.0574 0.0014 319430.2 90 313.0564 0.0009s 2s22p4 3P2 – (4S◦)3s 3S◦
1 6.1e+09 C 12 26

313.692 0.002 318784 70 313.6877 0.0009s 2s22p4 3P1 – (4S◦)3s 3S◦
1 3.6e+09 C 12 26

313.964 0.004 318508 30 313.9612 0.0009s 2s22p4 3P0 – (4S◦)3s 3S◦
1 1.2e+09 C 12 26

831.844 0.006 120214.8 240 831.8452 0.0003s (4S◦)3s 5S◦
2 – (4S◦)4p 5P3 1.3e+08 D 9 C

831.963 0.006 120197.7 180 831.9635 0.0003s (4S◦)3s 5S◦
2 – (4S◦)4p 5P2 1.3e+08 D 9 C

832.041 0.006 120186.4 160 832.0371 0.0004s (4S◦)3s 5S◦
2 – (4S◦)4p 5P1 1.3e+08 D 9 C

841.186 0.006 118879.8 120 841.1878 0.0003s (2D◦)3s 3D◦
3 – (2D◦)4p 3F4 9.7e+07 D 9 C

841.344 0.006 118857.4 70 841.3467 0.0003s (2D◦)3s 3D◦
2 – (2D◦)4p 3F3 9.1e+07 D 9 C

841.429 0.006 118845.4 20 841.4336 0.0002s (2D◦)3s 3D◦
1 – (2D◦)4p 3F2 8.6e+07 D 9 C

846.377 0.006 118150.7 120 846.3802 0.0003s (2D◦)3s 3D◦
3 – (2D◦)4p 3D3 1.3e+08 D 9 C

846.659 0.006 118111.3 70 846.6620 0.0003s (2D◦)3s 3D◦
2 – (2D◦)4p 3D2 1.1e+08 D 9 C

847.091 0.006 118051.1 20 847.0960 0.0003s (2D◦)3s 3D◦
1 – (2D◦)4p 3D1 9.5e+07 D 9 C

870.235 0.006 114911.5 30 870.2288 0.0003s (4S◦)3s 3S◦
1 – (4S◦)4p 3P1 9

870.367 0.006 114894.1 50 870.3637 0.0002s (4S◦)3s 3S◦
1 – (4S◦)4p 3P2 9

873.023 0.006 114544.5 90 873.0219 0.0003s (2D◦)3s 1D◦
2 – (2D◦)4p 1F3 1.2e+08 D 9 C

881.393 0.006 113456.8 50 881.3978 0.0008s (2D◦)3s 1D◦
2 – (2D◦)4p 1P1 1.5e+08 D 9 C

918.534 0.006 108869.1 50 918.5307 0.0007s (2D◦)3p 3D3 – (2D◦)5s 3D◦
3 1.2e+08 D 9 C

925.038 0.006 108103.7 100 925.0456 0.0008s (4S◦)3p 5P1 – (4S◦)5s 5S◦
2 8.1e+07 D 9 C

925.306 0.006 108072.4 160 925.3119 0.0008s (4S◦)3p 5P2 – (4S◦)5s 5S◦
2 1.3e+08 D 9 C

925.760 0.006 108019.4 200 925.7654 0.0008s (4S◦)3p 5P3 – (4S◦)5s 5S◦
2 1.9e+08 D 9 C

938.043 0.006 106604.9 30 938.0406 0.0008s (2D◦)3p 3F3 – (2D◦)5s 3D◦
2 1.8e+08 D 9 C

938.454 0.006 106558.2 30 938.4544 0.0007s (2D◦)3p 3F4 – (2D◦)5s 3D◦
3 1.8e+08 D 9 C

944.672 0.006 105856.8 50 944.6716 0.0004s (2D◦)3p 1F3 – (2D◦)5s 1D◦
2 1.9e+08 D 9 C

1027.047 0.006 97366.5 140 1027.0439 0.0006s (4S◦)3s 3S◦
1 – (2P◦)3p 3P2 3.9e+07 C 9 26

1027.521 0.006 97321.6 100 1027.5190 0.0006s (4S◦)3s 3S◦
1 – (2P◦)3p 3P1 4.3e+07 C 9 26

1027.832 0.006 97292.2 50 1027.8318 0.0005s (4S◦)3s 3S◦
1 – (2P◦)3p 3P0 4.5e+07 C 9 26

1035.695 0.006 96553.5 30 1035.6981 0.0006s (2D◦)3p 3F2 – (2D◦)4d 3G◦
3 6.1e+07 D 9 C

1083.130 0.006 92325.0 30 1083.1150 0.0005s (2D◦)3p 1D2 – (2D◦)5s 1D◦
2 1.4e+08 D 9 C

1093.030 0.006 91488.8 70 1093.0266 0.0009s (4S◦)3p 3P2 – (4S◦)4d 3D◦
3 9.3e+07 D 9 C

1200.489 0.006 83299.4 90 1200.4839 0.0010s (4S◦)3p 3P1 – (2D◦)3d 3S◦
1 5.7e+07 C 9 26

1200.638 0.006 83289.1 100 1200.6419 0.0011s (4S◦)3p 3P2 – (2D◦)3d 3S◦
1 6.2e+07 C 9 26

1207.431 0.006 82820.5 100 1207.4201 0.0010s (4S◦)3p 3P1 – (2D◦)3d 3P◦
2 2.3e+07 C 9 26
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Table 2. Continued.

λobs Obs. σobs Obs. int. λRitz Ritz Transitiond Ae (s−1) Ref.

(Å)a unc.(Å) (cm−1) and char.b (Å) unc.c(Å) λf Ag

1207.575 0.006 82810.6 160 1207.5799 0.0010s (4S◦)3p 3P2 – (2D◦)3d 3P◦
2 6.9e+07 C 9 26

1231.645 0.006 81192.2 180 1231.6461 0.0007s (2D◦)3s 3D◦
3 – (4S◦)4p 3P2 9

1232.101 0.006 81162.2 120 1232.0924 0.0008s (2D◦)3s 3D◦
2 – (4S◦)4p 3P2 9

1255.021 0.002 79679.92 240 1255.0186 0.0007s (4S◦)3s 3S◦
1 – (2D◦)3p 3P0 1.2e+08 C 10 26

1255.691 0.002 79637.42 360 1255.6911 0.0007s (4S◦)3s 3S◦
1 – (2D◦)3p 3P1 1.3e+08 C 10 26

1257.201 0.003 79541.8 500 1257.2070 0.0007s (4S◦)3s 3S◦
1 – (2D◦)3p 3P2 1.3e+08 C 9 26

1375.023 0.002 72726.06 300 1375.0226 0.0008s (2D◦)3p 1P1 – (2D◦)4s 1D◦
2 2.1e+08 D 10 C

1395.804 0.006 71643.3 50 1395.7970 0.0009s (2D◦)3p 3D1 – (2D◦)4s 1D◦
2 9

1448.193 0.006 69051.6 90 1448.2061 0.0009s (2D◦)3p 3D1 – (2P◦)3d 1D◦
2 2.3e+05 C 9 26

1448.438 0.006 69039.9 200 1448.4368 0.0009s (2D◦)3p 3D2 – (2P◦)3d 1D◦
2 1.3e+04 C 9 26

1449.899 0.006 68970.3 50 1449.8936 0.0009s (2D◦)3p 3D3 – (2P◦)3d 1D◦
2 1.8e+05 C 9 26

1473.050 0.002 67886.36 360 1473.0495 0.0007s (2D◦)3p 1F3 – (2D◦)4s 1D◦
2 3.4e+08 D 10 C

1499.364 0.009 66694.9 120 1499.3571 0.0010s (2D◦)3p 3F2 – (2P◦)3d 1D◦
2 4.4e+05 C 9 26

1499.710 0.009 66679.6 180 1499.7045 0.0010s (2D◦)3p 3F3 – (2P◦)3d 1D◦
2 2.3e+04 C 9 26

1508.343 0.009 66297.9 70 1508.3385 0.0010s (2D◦)3p 3F3 – (2P◦)3d 3F◦
2 1.4e+06 C 9 26

1511.480 0.009 66160.3 160 1511.4740 0.0010s (2D◦)3p 3F4 – (2P◦)3d 3F◦
4 1.1e+07 C 9 26

1570.733 0.009 63664.5 140 1570.7345 0.0009s (2D◦)3s 3D◦
3 – (2P◦)3p 3P2 1.3e+06 C 9 26

1572.573 0.009 63590.1 90 1572.5732 0.0009s (2D◦)3s 3D◦
2 – (2P◦)3p 3P1 8.1e+05 C 9 26

1573.806 0.009 63540.2 20 1573.8045 0.0009s (2D◦)3s 3D◦
1 – (2P◦)3p 3P0 7.7e+05 C 9 26

1585.391 0.003 63075.92 400 1585.4013 0.0009s (4S◦)3p 3P1 – (4S◦)4s 3S◦
1 3.3e+08 D 9 C

1585.655 0.003 63065.42 500 1585.6534 0.0010s (4S◦)3p 3P0 – (4S◦)4s 3S◦
1 1.1e+08 D 9 C

1585.680 0.003 63064.43 500 1585.6768 0.0009s (4S◦)3p 3P2 – (4S◦)4s 3S◦
1 5.5e+08 D 9 C

1604.734 0.002 62315.64 360 1604.7353 0.0005s (2D◦)3s 1D◦
2 – (2P◦)3p 1D2 1.3e+08 C 10 26

1687.991 0.009 59242.0 140 1687.9944 0.0010s (2D◦)3s 3D◦
3 – (2P◦)3p 3D2 2.8e+06 C 9 26

1688.776 0.003 59214.48 300 1688.7773 0.0011s (2D◦)3s 3D◦
3 – (2P◦)3p 3D3 1.5e+07 C 9 26

1688.822 0.009 59212.9 260 1688.8327 0.0011s (2D◦)3s 3D◦
2 – (2P◦)3p 3D2 1.1e+07 C 9 26

1689.374 0.009 59193.5 200 1689.3796 0.0011s (2D◦)3s 3D◦
1 – (2P◦)3p 3D1 1.2e+07 C 9 26

1689.611 0.009 59185.2 100 1689.6164 0.0010s (2D◦)3s 3D◦
2 – (2P◦)3p 3D3 1.9e+06 C 9 26

1839.729 0.009 54355.8 240 1839.7304 0.0011s (2D◦)3p 1D2 – (2D◦)4s 1D◦
2 2.5e+08 D 9 C

1880.2095 0.0002 53185.562 240 1880.2095 0.0002s (2P◦)3s 1P◦
1 – (2P◦)3p 1S0 6.8e+08 C T 26

2065.3091 0.0002 48403.436 1000 2065.3090 0.0002s (2D◦)3s 1D◦
2 – (2D◦)3p 1D2 4.7e+08 C T 26

2088.889 0.009 47857.1 200 2088.8903 0.0009s (2D◦)3p 3D1 – (2D◦)3d 3D◦
2 5.1e+07 C 9 26

2089.361 0.003 47846.31 300 2089.3706 0.0009s (2D◦)3p 3D2 – (2D◦)3d 3D◦
2 2.8e+08 C 9 26

2149.8698 0.0004 46499.813 400 2149.8698 0.0004s (2D◦)3p 3D2 – (2D◦)3d 3F◦
3 3.8e+08 C T 26

2151.1999 0.0008 46471.06 300 2151.2003 0.0007s (2D◦)3p 3D1 – (2D◦)3d 3F◦
2 3.6e+08 C T 26

2153.085 0.009 46430.4 240 2153.0822 0.0006s (2D◦)3p 3D3 – (2D◦)3d 3F◦
3 5.4e+07 C 9 26

2161.134 0.002 46257.47 800 2161.1350 0.0009s (4S◦)3p 5P2 – (4S◦)3d 5D◦
3 4.3e+08 C 10 26

2163.7337 0.0003 46201.903 1000 2163.7337 0.0003s (4S◦)3p 5P3 – (4S◦)3d 5D◦
4 6.4e+08 C T 26

2176.6293 0.0003 45928.205 360 2176.6294 0.0003s (2D◦)3s 3D◦
1 – (2D◦)3p 3P0 4.1e+08 C T 26

2177.6980 0.0002 45905.669 400 2177.6980 0.0002s (2D◦)3s 3D◦
2 – (2D◦)3p 3P1 3.0e+08 C T 26

2178.6538 0.0003 45885.532 300 2178.6539 0.0003s (2D◦)3s 3D◦
1 – (2D◦)3p 3P1 1.0e+08 C T 26

2180.8631 0.0002 45839.052 600 2180.8631 0.0002s (2D◦)3s 3D◦
3 – (2D◦)3p 3P2 3.4e+08 C T 26

2182.2632 0.0003 45809.646 300 2182.2632 0.0003s (2D◦)3s 3D◦
2 – (2D◦)3p 3P2 6.2e+07 C T 26

2183.222 0.009 45789.5 120 2183.2231 0.0005s (2D◦)3s 3D◦
1 – (2D◦)3p 3P2 4.1e+06 C 9 26

2197.789 0.009 45486.1 160 2197.7950 0.0010s (2D◦)3p 3F3 – (2D◦)3d 3D◦
2 3.3e+07 C 9 26

2209.3151 0.0004 45248.789 400 2209.3151 0.0004s (2P◦)3p 3D3 – (2P◦)3d 3F◦
4 6.1e+08 C T 26

2211.8239 0.0005 45197.470 600 2211.8239 0.0005s (2D◦)3p 3F2 – (2D◦)3d 3G◦
3 5.8e+08 C T 26

2213.7211 0.0003 45158.739 800 2213.7210 0.0003s (2D◦)3p 3F3 – (2D◦)3d 3G◦
4 5.8e+08 C T 26

2263.1661 0.0006 44172.219 360 2263.1662 0.0006s (2D◦)3p 3F4 – (2D◦)3d 3F◦
4 1.8e+08 C T 26

2264.832 0.002 44139.73 320 2264.8351 0.0006s (2D◦)3p 3F3 – (2D◦)3d 3F◦
3 1.6e+08 C 10 26

2273.5826 0.0003 43969.861 800 2273.5828 0.0003s (2D◦)3p 1F3 – (2D◦)3d 1G◦
4 5.7e+08 C T 26

2362.8647 0.0003 42308.576 300 2362.8645 0.0003s (2P◦)3s 3P◦
1 – (2P◦)3p 3P2 7.9e+07 C T 26

2363.2310 0.0002 42302.020 400 2363.2310 0.0002s (2P◦)3s 3P◦
2 – (2P◦)3p 3P2 2.5e+08 C T 26

2365.3821 0.0004 42263.553 260 2365.3822 0.0004s (2P◦)3s 3P◦
1 – (2P◦)3p 3P1 8.7e+07 C T 26
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Table 2. Continued.

λobs Obs. σobs Obs. int. λRitz Ritz Transitiond Ae (s−1) Ref.

(Å)a unc.(Å) (cm−1) and char.b (Å) unc.c(Å) λf Ag

2365.4188 0.0003 42262.897 280 2365.4187 0.0003s (2P◦)3s 3P◦
0 – (2P◦)3p 3P1 1.1e+08 C T 26

2367.0409 0.0003 42233.937 300 2367.0409 0.0003s (2P◦)3s 3P◦
1 – (2P◦)3p 3P0 3.3e+08 C T 26

2473.3862 0.0002 40418.188 600 2473.3862 0.0002s (2P◦)3s 1P◦
1 – (2P◦)3p 1D2 2.7e+08 C T 26

2589.9971 0.0003 38598.536 3000 2589.9970 0.0003s (4S◦)3s 5S◦
2 – (4S◦)3p 5P3 2.4e+08 C T 26

2593.5552 0.0003 38545.586 2500 2593.5551 0.0003s (4S◦)3s 5S◦
2 – (4S◦)3p 5P2 2.4e+08 C T 26

2595.6498 0.0003 38514.482 2000 2595.6498 0.0003s (4S◦)3s 5S◦
2 – (4S◦)3p 5P1 2.4e+08 C T 26

2611.409 0.002 38282.07 800 2611.4084 0.0006s (2D◦)3s 3D◦
3 – (2D◦)3p 3F3 2.0e+07 C 10 26

2613.4161 0.0003 38252.674 2000 2613.4161 0.0003s (2D◦)3s 3D◦
2 – (2D◦)3p 3F3 2.3e+08 C T 26

2638.7112 0.0003 37885.999 1500 2638.7111 0.0003s (2P◦)3s 3P◦
1 – (2P◦)3p 3D2 1.8e+08 C T 26

2641.0831 0.0003 37851.976 1500 2641.0831 0.0003s (2P◦)3s 3P◦
2 – (2P◦)3p 3D3 2.3e+08 C T 26

2677.9047 0.0003 37331.535 2500 2677.9047 0.0003s (4S◦)3s 3S◦
1 – (4S◦)3p 3P2 2.3e+08 C T 26

2677.9717 0.0003 37330.601 1500 2677.9716 0.0003s (4S◦)3s 3S◦
1 – (4S◦)3p 3P0 2.3e+08 C T 26

2678.6912 0.0003 37320.575 2000 2678.6912 0.0003s (4S◦)3s 3S◦
1 – (4S◦)3p 3P1 2.3e+08 C T 26

2727.8987 0.0005 36647.401 240 2727.8985 0.0005s (2D◦)3d 1F◦
3 – (2D◦)4p 1D2 9.2e+07 D T C

2766.9467 0.0005 36130.249 1500 2766.9467 0.0005s (4S◦)3d 3D◦
3 – (4S◦)4p 3P2 1.4e+08 D T C

2777.6288 0.0003 35991.308 2500 2777.6288 0.0003s (2D◦)3s 3D◦
3 – (2D◦)3p 3D3 1.8e+08 C T 26

2785.2735 0.0004 35892.528 2000 2785.2734 0.0004s (2D◦)3s 3D◦
2 – (2D◦)3p 3D2 1.4e+08 C T 26

2787.6919 0.0005 35861.392 1500 2787.6919 0.0005s (2D◦)3s 3D◦
1 – (2D◦)3p 3D1 1.4e+08 C T 26

2866.7187 0.0005 34872.850 2500 2866.7190 0.0005s (2D◦)3s 1D◦
2 – (2D◦)3p 1F3 1.9e+08 C T 26

∗In this shortened version of the table, only the lines selected as secondary Ritz standards are given.
aObserved wavelength is given in vacuum for lines shorter than 1999 Å and longer than 7000 Å. For the rest of the lines,
observed wavelength is given in standard air. Conversion from vacuum to air was done using the five-parameter formula for
refraction index of air from Peck and Reeder [27]. Symbol p in this column means that the line was predicted but not observed.
Observed vacuum wave numbers were derived from the observed air wavelengths using the same formula of Peck and Reeder
[27], except for the lines measured in the present work, for which the vacuum wave number was the primary measured quantity.
Wave numbers of the lines from references [10,11] are cited from there.
bLine character legends (quoted from the references given in the last column): w – wide or diffuse or hazy; c – complex feature;
s – shaded to shorter wavelengths; l – shaded to longer wavelengths; bl – blended with another line that may affect the wavelength
and/or intensity; (includes “shoulder”, “affected” etc.); m – masked by another line (no wavelength measured).
cAn asterisk after the value of uncertainty of the calculated wavelength means that the upper or lower level of the transition is
determined by this line alone. The uncertainties were determined by means of the LOPT code described in Appendix. Superscript
s indicates that the Ritz wavelength of this line is suggested as a secondary wavelength standard.
dThe parent term in parentheses refers to the 2s22p3 configuration of the core. Question mark after the upper level means that
identification of this level is questionable.
eThe uncertainties of the transition probability values are denoted as follows: A – ≤3%; B – ≤10%; C – ≤25%; D – ≤50%.
fReferences to observed wavelengths and identifications. T means the present work.
gReferences to transition probabilities: 26 – the MCHF energy-adjusted transition probability data for Ne III were taken from
the data collection of Froese Fischer and Tachiev [26] in the beginning of January 2004, just after they were re-calculated by
Froese Fischer and Tachiev with corrected experimental energies from Persson [9]. Results of previous calculations posted on
this website prior to that date used incorrect experimental energies, which caused errors up to a factor of two for several weak
transitions; C – calculations with Cowan’s codes, this work.

of 0.7 of their Hartree-Fock values and repeated the fitting.
This time, the fitting converged with very small positive
values of the α-parameters, indicating that the configura-
tion interaction is now treated correctly. This procedure
is equivalent to fixing the α-parameters at zero values and
letting all CI parameters linked together to vary. How-
ever, the latter procedure requires much larger array di-
mensions and exhausts the available computer memory
while leading to essentially the same results. The fitted
parameters were used in Cowan’s RCG code, producing
improved transition probabilities. Then a separate utility
program CONV OUT was used to produce a simulated

spectrum. This program reads output files of both RCG
and Cowan’s parametric fitting code RCE. Then it iden-
tifies the eigenvectors from the output file of RCE with
those computed by RCG and substitutes the experimen-
tal levels from the RCE input file into transitions com-
puted by RCG. The CONV OUT code calculates relative
intensities of the lines assuming Boltzmann level popu-
lations. An electron temperature 6 eV was assumed. All
newly identified levels are located in the relatively narrow
interval 483000 cm−1 to 535000 cm−1, so the difference
in collisional population rates in the plasma sources used
in reference [13] (low-and high power Penning discharges)
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should not lead to dramatic changes in relative intensities
of lines, as compared with our calculations. Thus the pre-
dicted spectrum can be directly compared with the one
observed by Livingston et al. [13]. In this way, the bulk
of their list has been confirmed, with few exceptions. All
of the new assignments made by Bastin [14] in Paul and
Polster’s line list [15] have also been confirmed.

Some of the multiple line assignments suggested
in reference [13] were dropped from the list as these
transitions have negligible transition probabilities com-
pared to the other components of the same mul-
tiplet in the corresponding line blend. A few lines
were supplemented with additional assignments to tran-
sitions that have a high calculated transition prob-
ability. The 208.9 Å and 219.6 Å lines, associated
in reference [13] with the 2p4 3P0–2p3(2P◦)4s 3P◦

1 and
2p4 1D2–2p3(2P◦)4s 1P◦

1, probably arise from the pre-
viously unknown 2p4 1S0–2p3(2P◦)5d1P◦

1 and 2p4 1S0–
2p3(2P◦)4d1P◦

1 transitions, which are predicted to be
much stronger.

On the basis of the predicted wavelengths and
relative line intensities, several previously unclassified
lines below 208 Å were identified with high cer-
tainty as transitions from the previously unknown
2p3(4S◦)6d 3D◦, 2p3 (4S◦)7d 3D◦, 2p3(2D◦)4d 3D◦, 3S◦,
3P◦ and 2p3(2P◦)4d 1F◦ terms.

We have also changed the identification of the blended
1810.13 Å line from the list of Persson et al. [9].
The 2p3(2D◦)3d 3F◦

4 − 2p3(2D◦)4f 1F3 intercombination
transition is marked as “masked” because it has a
very small transition probability, and a new assignment
2p3(2D◦)3d 3F◦

3 − 2p3(2D◦)4f 3F4 is added, which is pre-
dicted to be dominant in this blend.

8 Transition probabilities

Because of the astrophysical importance of the Ne III spec-
trum, transition probabilities of both allowed and refer-
ence transitions of this spectrum were extensively calcu-
lated by a number of authors. However, there have been
only a few measurements of radiative lifetimes and tran-
sition rates.

Froese Fischer and Tachiev [26] have recently posted
updated results on the World Wide Web for their energy-
corrected multi-configuration Hartree-Fock (MCHF) cal-
culations of Ne III. Where possible, we included their
transition probabilities (A-values) in Table 2. Their un-
certainty should be less than 25% in most cases. In a
few cases, explained below, comparison with experimen-
tal data and other calculations justifies lower uncertainty
estimates.

Using recent precise measurements of the radiative
lifetime of the 2p4 1S0 level [28] we estimate that the
uncertainty of the transition probabilities of the forbid-
den 2s22p4 3P1–2s22p4 1S0 (magnetic dipole) and 2s22p4

1D2 − 2s22p4 1S0 (electric quadrupole) transitions with
Ritz wavelengths 1814.56 Å and 3342.18 Å is about 3%.

The uncertainty of the A-values for the magnetic
dipole 2s22p4 3P1–2s22p4 1D2 and 2s22p4 3P2–2s22p4 1D2

transitions (observed at 3967.47 Å and 3868.76 Å, corre-
spondingly) is less than 3%. This is confirmed by a very
good agreement with results of Storey and Zeippen [29]
and Galavis et al. [30].

The A-values for the far-infrared magnetic dipole
transitions 2s22p4 3P2–2s22p4 3P1 (15.5551 µm) and
2s22p4 3P1–2s22p4 3P0 (36.0135 µm) calculated by differ-
ent methods in references [26,31] (corrected for experi-
mental energies) agree to within 2% and 5%, respectively.
We consider these small differences as a measure of the
uncertainties of these values.

Although, in general, calculations of Froese Fischer
and Tachiev [26] are much more accurate than those of
Bhatia et al. [25], the good agreement between them al-
lows us to restrict the uncertainty bounds on the A-values
to 10% for the 2s22p4 3P–2s22p3(2P◦)3d 3P◦, 2s22p4 3P–
2s22p3(2D◦)3d 3P◦, 2s22p4 3P–2s22p3(2D◦)3d 3D◦, and
2s22p4 1D–2s22p3(2P◦)3d 1F◦ transitions in the VUV.

The A-values for the resonance transitions
2s22p4 3P1,2–2s2p5 3P◦

2 agree to within 5% between the
MCHF calculations [26] and earlier multi-configuration
Dirac-Fock (MCDF) results [32]. However, the A-
value for the intercombination transition 2s2p5 3P◦

2–
2s22p3(4S◦)3s 5S◦

2 reported in the MCHF data collec-
tion [26] is almost a factor of two lower than the MCDF
result [32]. Although the MCHF result (cited from
Ref. [26] in Tab. 2) should be more accurate, independent
calculations of comparable quality are needed in order to
confirm this value.

The transition probability of the 2s22p4 1D2–
2s2p5 1P◦

1 line at 379 Å given in reference [26] agrees
very well with several other calculations summarized in
reference [33]. However, the second, much weaker, decay
branch of the same upper level, namely, the 2s22p4 1S0–
2s2p5 1P◦

1 transition at 428 Å, is much harder to calcu-
late. For this line, results of several calculations reported
in reference [33] are somewhat higher than the A-value
in reference [26]. Several measurements of the 379/428 in-
tensity ratio [34,35] also indicate that the A-value of the
428 Å line given in reference [26] may be too low by as
much as 50%.

Although Cowan’s programs [22] are very easy to use
for calculations of transition probabilities, their results
usually are not very accurate. Even if one uses Slater
parameters adjusted by least-squares parametric fitting,
the scope of included correlation effects is usually very
limited. This approximation, as well as the limitation on
the number of included configurations, makes it virtu-
ally impossible to obtain the same kind of accuracy with
Cowan’s codes as with the MCHF or MCDF codes that
use multi-configuration basis wavefunctions. The accuracy
of wavefunctions (and hence the A-values) computed by
the latter two methods is much higher, because the ra-
dial parts of the basis wavefunctions are optimized in
the variational procedure along with the expansion co-
efficients. However, we can expect the A-values computed
by Cowan’s codes to be rather accurate for transitions
between almost pure states with no change of the core
term or spin of the valence electron. For such LS-allowed
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transitions, the low degree of state mixing implies lit-
tle influence of configuration-interaction effects. Indeed,
if we compare approximately 130 A-values computed by
Cowan’s codes [22] with reference [26] for transitions be-
tween the levels with 80% or higher purity of LS cou-
pling, almost all of them agree to within 25% or less. Only
four transitions have A-values that differ in Cowan’s re-
sults and reference [26] by 30% to 35%, and one transi-
tion has a difference of 73%. This problematic transition
is 2s22p3(2D◦)3p 3P1−2s22p3(2D◦)3d 3P◦

1 at 2460.725 Å.
The lower and upper states are 93% and 99% pure in
LS coupling, as calculated by Cowan’s codes. Currently
we cannot explain why the results of Cowan’s codes and
MCHF [26] differ so much for this transition. Neverthe-
less, we are still confident that, except for a few rare cases,
transition probabilities of such LS-allowed transitions are
calculated by Cowan’s codes with uncertainties not ex-
ceeding 50%.

It should be taken into account that we speak here
only about Cowan-code calculations using the Slater pa-
rameters substituted from the results of the least squares
fitting of the known energy levels. Ab initio calculations
using Cowan’s codes produce energy levels that often de-
viate too much from the experimental ones. The error in
transition energies, as well as the error in the degree of
level mixing, can have an adverse effect on the transition
probabilities.

With all precautions mentioned above, we selected the
A-values computed by Cowan’s codes that we expect to
be accurate to within 50% and included them in Table 2
where MCHF results were not available.

9 Conclusion

As a result of the present work, 57 lines of Ne III have been
precisely measured using Fourier transform spectroscopy.
A comprehensive list of 824 emission lines of Ne III has
been compiled. This line list includes more than a hun-
dred lines for which the measurement uncertainty is sig-
nificantly smaller than in the previous analysis done by
Persson et al. [9]. About 80% of previously known energy
levels of Ne III have been determined with improved accu-
racy. Over a hundred precise wavelength standards have
been derived with well-defined uncertainties in the region
210 Å to 2900 Å. The value of the ionization potential
of Ne III has been increased by 4.5 cm−1. Nine new en-
ergy levels have been found, and 16 new transitions have
been identified in the EUV range. Transition probabilities
have been calculated and critically evaluated, and the best
available value is given for approximately 70% of all lines.

The authors wish to express their gratitude to Dr. W.C. Martin
for helpful discussions and making available some important
sources of information, and to Dr. C. Sansonetti for numerous
essential corrections to the manuscript and for permission to
use his computer code for fitting the polarization formula. Dr.
J. Reader provided a lot of valuable advice in preparation of
the publication. This work was partly supported by the Office

of Fusion Energy Sciences of the U.S. Department of Energy
and by National Aeronautics and Space Administration.

Appendix: Level optimization program LOPT

This computer program was created at the National Insti-
tute of Standards and Technology in 1995 and was further
developed in 1997–2003. Its name LOPT stands for Level
Optimization. The basic method is a least squares fitting
of the energy levels to the observed wave numbers that
ideally should be exactly equal to the differences between
the corresponding upper and lower levels. In this type of a
problem, a sum of weighted squares of deviations is mini-
mized. This minimization can be done either by iterations
or by solving a set of linear differential equations by con-
structing and inverting a proper matrix of coefficients.

The program LOPT is written in Turbo-Pascal lan-
guage for an IBM PC compatible computer. The basic
algorithm implements the matrix inversion approach de-
scribed by Radziemski et al. [36] and consists in the fol-
lowing.

The level-optimization problem can be formulated as
minimization of the function F defined as

F =
∑

i,j

(sij − ∆Eij)2wij , (4)

where sij is the measured wave number of the tran-
sition between the unknown energy levels Ei and Ej ,
∆Eij = Ei − Ej , and the weight wij = d−2

ij is equal to
the square of the reciprocal measurement uncertainty.

This leads to a set of linear equations of the form
∑

j

EjWij = Si, (5)

where Wij is a matrix of coefficients, and Si are some
combinations of sij and wij [36].

The solution is found by inverting the matrix Wij :

Ej =
∑

i

W−1
ij Si. (6)

Apart from finding the optimized levels, the program
LOPT calculates uncertainties of the predicted (Ritz)
wave numbers. In the first version of the program we used
an algorithm suggested by van het Hof in the appendix to
his doctor thesis [37]. He introduced a concept of “error
current”, replacing the graph of energy levels connected
by a set of observed transitions with an analogous electric
circuitry. In this circuitry, transitions are replaced by resis-
tances equal to squares of measurement uncertainties. In
order to calculate relative uncertainty of any pair of levels,
one should apply an arbitrary “voltage” between these lev-
els and find the total “error current” between them. This
will yield the total “resistance” between these two levels.
The uncertainty of the energy difference (wave number
of the transition) is equal to square root of this “resis-
tance”. In reference [37], this concept was applied only
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to uncertainties of excited levels relative to the ground
state, but the same procedure applies to any pair of lev-
els. Thus, for each of the observed transitions, one needs
to solve the problem of finding the “error currents” for
each observed line separately, which implies inverting the
corresponding matrix (each time different) as many times
as there are observed lines. This demands a powerful com-
puter. For Ne III, optimization of 250 energy levels against
900 observed lines could be easily performed even on an
IBM-PC/386 computer within a few minutes of run-time
whereas the computation of the uncertainties of predicted
wave numbers takes several hours on a Pentium/90 com-
puter. Although with modern desktop computers execu-
tion time is decreased by an order of magnitude, it is still
considerable, especially for systems with larger numbers
of energy levels.

Another algorithm of computation of the Ritz wave-
length uncertainties, which has been finally implemented
in the LOPT code, is based on the concept of covariance
matrix developed by Radziemski et al. [36]. Using statis-
tical theory, it can be rigorously shown that, if the wave
number measurements sij are statistically independent,
then the uncertainties aij of the energy differences Ei−Ej

are defined by a simple combination of the elements of the
inverse matrix W−1:

aij =
(
W−1

ii + W−1
jj − 2W−1

ij

)1/2
. (7)

This expression can be identified as the covariance matrix
of the system (5). Using the relation (7), uncertainties of
all Ritz wave numbers can be found after only one matrix
inversion, and it is the same matrix that is used to deter-
mine the energy levels. This reduces the computation time
by several orders of magnitude, compared with the “error
current” algorithm. Numerical experiments showed that
the results obtained with both algorithms are identical.

In references [36,37] it was noted that equations (4)
through (7) are valid only if the measurements sij are
statistically independent and have a normal distribution.
It should be pointed out that, according to statistical
theory [38], the assumption of a normal statistical dis-
tribution of measurements sij is not necessary for rigor-
ous derivation of relations (5) through (7), provided that
the individual terms in equation (4) are statistically in-
dependent. Thus, the requirement of the normal distribu-
tion of measurements is only significant for the validity
of using weights inversely proportional to the square of
measurement uncertainties in equation (4). If these mea-
surement uncertainties are equal to the standard devia-
tions of measurements, then the uncertainties aij defined
by equation (7) also represent the standard deviations of
the energy level differences derived from equation (6). The
essential condition of the validity of these results is the sta-
tistical independence of the wave number measurements,
i.e. absence of systematic errors.

Thus, the validity of both the “error current” and
covariance-matrix approaches is restricted to the case of
absence of systematic errors in the measured wave num-
bers. If some systematic errors are present, in certain cases
they can result in progressive accumulation of systematic

errors in the level values from the ground state to up-
per levels. The simplest example of this case is an almost
equally spaced ladder-like level system for which the level
values are derived from transitions occurring between the
consecutive steps of the ladder. If all wave numbers of
these transitions have a small systematic error in one di-
rection, then the energy of the uppermost level relative to
the ground level will have an error equal to the value of
the systematic shift multiplied by the number of steps in
the ladder. To our knowledge, there is no rigorous method
developed for the estimation of level uncertainties caused
by systematic errors in a general case.

Formula (7) was derived on the assumption that there
is only one fixed level (the ground state) in the level sys-
tem. Very often an atomic spectrum is divided into two or
more independent sub-systems. For example, in the case
of the Ne III spectrum, the quintet levels are not con-
nected to triplet or singlet levels. In such cases, the usual
way is to fix some additional levels in order to eliminate
degeneracy of equation system (5). This fixing decreases
the summation range in the left-hand side of equation (5)
and modifies its right-hand side. As a consequence, al-
though the levels still can be found from equation (6),
the rigorous derivation that led to equation (7) cannot
be followed in the same way. Thus, equation (7) becomes
inapplicable. In addition, uncertainties of predicted inter-
system lines cannot be derived because fixing of the levels
assumes zero uncertainties. To avoid these difficulties, a
concept of “virtually fixed levels” was introduced in the
LOPT code. Instead of ultimately fixing the level, a virtual
transition is added to the initial set of lines. This virtual
transition connects the level with the ground state. The
wave number of this transition is assumed to have a finite
uncertainty. The whole problem is solved in two stages. In
the first stage, the optimized levels are found, assuming
the uncertainties of the virtually fixed levels to be very
small. This effectively fixes these levels in the solution of
equation system (5). In the second stage, the uncertain-
ties of predicted wave numbers are found by solving the
system (5) again, assuming some realistic (user-defined)
uncertainties of the virtually fixed levels. The level val-
ues resulting from equation (6) in the second stage are
ignored, as they could imply some deviation of the virtu-
ally fixed levels from their initial values, and this would
lead to a shift of the levels that are directly connected
to the virtually fixed levels by observed lines. So, in the
second stage of solution, only the inverse matrix W−1 is
found from equation system (5), and the uncertainties aij

are determined using equation (7).
Another feature of the LOPT code is the possibility

of determining the level values associated with unresolved
blends of several transitions. This is done by multiplica-
tion of the line weights of the unresolved blend compo-
nents by factors proportional to the calculated intensities:

wij = d−2
ij Icalc/Itot, (8)

where Itot is the sum of the calculated intensities of all
components of the blend. This is equivalent to multiply-
ing the line uncertainties dij by the square root of the
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corresponding reciprocal factors. Numerical experiments
show that equation (8) results in correct optimized level
values. A consequence of applying the additional weights
in equation (8) is an increase of the uncertainties of the
derived energy levels which is significant in the case when
the upper level of the component transition in the blend is
derived from this line alone. In such case, the uncertainty
of the upper level increases exactly by the same factor
equal to (Itot/Icalc)−1/2 as the effective wave-number un-
certainty of the line component. There is a pitfall in using
the additional weights for components of blended lines oc-
curring in the cases when the position of the line center
is measured very precisely, e.g. with uncertainty that is
much smaller than the distance between the positions of
the components. In such cases, using the actual measure-
ment uncertainty of the line in equation (8) would result
in a distortion of the relative positions of the correspond-
ing energy levels, since they would gravitate towards each
other in order to reproduce the equal observed wave num-
bers of the component transitions. To avoid this effect, it is
a rule of thumb to replace the actual measurement uncer-
tainty of such precisely measured blends with a maximal
separation between the line components or half of the line
width, whichever is greater. A simple example of usage of
blended lines in the level optimization is the unresolved
2p3(4S◦)5f 5F term of Ne III which is connected to the
well-resolved fine structure levels of the 2p3(4S◦)3d 5D◦
term by one blended line at 1295.57 Å. If this were the
only line defining the upper term, it would be simple to
use the individual components of the unresolved multi-
plet to derive the fine-structure components of the upper
5F term and then find the center of gravity of the term.
However, there is also another blended line at 3921.03 Å
connecting this term with the 2p3(4S◦)4d 5D◦ term which
is also resolved. Having this additional connection greatly
complicates the problem of finding the center of gravity
of the 5F term because of the various measurement uncer-
tainties that should enter into the averaging procedure.
The program LOPT makes such problems very easy to
solve by using equation (8).

Some lines can be excluded from the level-optimization
procedure by setting a corresponding flag (“masked” or
“predicted”) in the input file. For these lines, the program
finds the Ritz wavelengths and their uncertainties.

Although it was mentioned above that there is no way
to rigorously estimate the effect of the possible systematic
errors on the derived energy levels, a reasonable estimate
still can be provided for certain types of systematic shifts.
In the LOPT code, the following algorithm is used to esti-
mate systematic shifts that can be represented as uniform
displacements of certain groups of lines relative to each
other. The list of observed spectral lines is divided into
several groups. In each group K, all lines are supposed to
be correlated, i.e. it is assumed that all measured wave
numbers between states Ei and Ej in the group are af-
fected by the same value of systematic shift δK :

sijK = s∗ijK + δK , (9)

where s∗ijK represents the unshifted wave number.

The smallest uncertainty of the measured wave num-
ber in the group is adopted as the upper bound of this
group’s possible systematic shift δK . This assumption is
reasonable for most types of spectral measurements. For
example, in the case of grating or prism spectrometers, the
usual procedure is to form a polynomial calibration curve
of the spectrometer. This calibration curve is obtained by
fitting the measured positions of a set of reference lines.
The standard deviation of this fit is included in the mea-
surement uncertainties of the lines. The errors in the po-
sitions of the reference lines represent a common source of
the systematic shift. Obviously, the smallest quoted line-
measurement uncertainty must have the largest contribu-
tion of these systematic errors to the total uncertainty.
Similarly, for FTS measurements the smallest quoted un-
certainties have a negligible contribution of the statistical
uncertainty and the largest contribution of the residual
uncertainty δσr (see Sect. 2) that represents the system-
atic error. This assumption is not rigorously justified in all
cases, but it provides a reasonable estimate of the group
shift δK . The effect of this shift on the level energy Ej re-
sulting from the solution of the least-squares problem can
be estimated by differentiating equation (6) with respect
to the group-shift variable δK . The derivative is simple
since the inverse matrix W−1 does not depend on wave
numbers (it is a combination of reciprocal squared uncer-
tainties), and the variables Si depend on the measured
wave numbers linearly. The calculated derivative multi-
plied by the estimated upper bound of systematic shift
δK is an estimate of the possible error in level energy due
to this systematic shift.

Thus, for each energy level, apart from the usual stan-
dard deviation of the calculated energy, we have a set of
additional possible errors due to systematic shifts of each
group of correlated lines. If the level is determined from
several lines, these shifts must be added to the standard
deviation in order to obtain a more confident estimate of
the possible error. The program LOPT does this adding
by computing the square root of the sum of squares of the
standard deviation and all estimated uncertainties due to
systematic line-shifts. The only exception is the case of a
level determined by a single line. In this case no adding is
done, as the estimated standard deviation of such level co-
incides with the wave-number measurement uncertainty,
which already includes the possible systematic error.

The effect of the possible systematic error of a certain
group of lines on the calculated wave numbers is estimated
in the same manner, by computing the derivative of each
calculated wave number on the group-shift variable and
multiplication of this derivative by the upper-bound es-
timate of this group shift. The squares of the contribu-
tions from each line group are added to the square of the
standard deviation to obtain the square of the estimated
uncertainty of the calculated wave number, except for the
case when this line alone determines one of the two levels
involved.

Using this estimate of the possible effect of system-
atic shifts in the program LOPT alleviates the problem
of accumulation of systematic errors in the derived energy
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levels. For the above-mentioned simple case of an equally-
spaced ladder-like system of levels, the uncertainty of the
uppermost level resulting from the LOPT code would nat-
urally include the effect of accumulation of the error. It
has no effect on the values of level energies and Ritz wave
numbers but increases the resulting uncertainties.

To run the program, the user needs to create three in-
put files: the file of transitions, the file of fixed levels, and
the parameter file. The latter provides a detailed descrip-
tion of the format of the first two files and various other
settings required to run the code. The transition and fixed-
level files are simple ASCII text files in which the data are
arranged in fixed-width columns. In the current version
of the code, the number of transitions is limited to 10000
and the number of levels to 1000. There is no limitation
on the type of transitions. They can be either “allowed” or
“forbidden”, which means that they can have both levels
of the same parity. Inclusion of such forbidden transitions
was a problem for some other level-optimization programs.

The program is available from the author at
Alexander.Kramida@nist.gov. The code is still under
development. However, complete user documentation is
available along with the source code. The full text of the
program will be published in a separate publication when
translation into C++ language is completed.
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